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Abstract

This project, User Review Segmentation: Unveiling Tourist Preferences, investigates the application
of unsupervised learning techniques to analyze Google user reviews of popular tourist attractions. The
objective was to identify distinct visitor segments based on rating behavior, thereby providing insights
into customer sentiment and enhancing understanding of user experiences. The methodology involved
exploratory data analysis and preprocessing, including the handling of missing values and standard-
ization of ratings. Clustering was primarily performed using K-means, both on the original feature
space and on data transformed via Principal Component Analysis (PCA) to facilitate dimensionality
reduction and improve interpretability. Optimal cluster numbers were determined using elbow plots
and silhouette scores. Additional clustering methods, including hierarchical agglomerative cluster-
ing and DBSCAN, were explored for comparative analysis. Post-clustering, groups were interpreted
and labeled according to rating patterns to reveal underlying trends in user sentiment. The results
identified clear visitor segments, including clusters with distinct preferences regarding accommoda-
tion, food, travel, and nature. Among the methods, K-means consistently outperformed the others,
achieving the highest silhouette score (0.391), Calinski-Harabasz index (4404.151), and the lowest
Davies-Bouldin index (0.818), indicating well-separated and cohesive clusters. In contrast, DBSCAN
showed poor performance due to the formation of an overly dominant central cluster. These findings
offer insights for companies in the tourism industry to support a more targeted marketing strategies
and improvements in visitor experience.
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1 Introduction
Travel and tourism is a massive global industry, generating billions of dollars annually and sup-

porting a wide range of interconnected businesses. From airlines and hotels to restaurants, tour guides,
and local shops, a single traveler’s journey can impact an entire economic ecosystem. When tourism
is thriving, the ripple effects are felt far beyond the travel agencies and booking platforms—small
businesses grow, jobs are created, and local economies get a boost.

On the flip side, the traveler benefits too. Being able to go on vacation is often a sign of financial
security and can contribute to personal well-being, relaxation, and cultural enrichment. In short, the
more aligned the travel experience is with a person’s interests, the more satisfying it becomes—and the
more likely they are to travel again. This mutual benefit creates a strong incentive to understand what
travelers actually want, so that services and experiences can be tailored to meet those expectations.

If businesses and destinations that attract tourism can most effectively understand and target
potential vacationers, everyone stands to benefit. Tourists enjoy a more tailored, engaging vacation
experience, while businesses and local economies see increased spending and growth. In this project,
we aim to discover which methods can be used to group travelers most effectively, ultimately helping
create more personalized, exciting vacations

1.1 Background Information
According to Statistics Canada, the tourism industry has generated approximately 282,987,500

jobs since 1986, underscoring its significant role in global economic growth. Countries with well-
developed infrastructure and a variety of tourist attractions stand to gain even more as the travel sector
continues to expand, creating more job opportunities and boosting local economies reliant on tourism.

Figure 1: Jobs Generated by Tourism in Canada, as reported by Statistics Canada, 2025
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Having companies that can effectively group travelers and bring them into the country can effec-
tively help the economy of that host country.

Recent work by Ahn et al., 2020 empirically investigated how different traveler groups’ experi-
ences influence their satisfaction ratings for hotels. Their findings showed that couples typically report
the highest satisfaction, while business travelers tend to be the least satisfied, with these differences
attributed to varying preferences for hotel features. This insight presents companies with a valuable
market opportunity: by understanding the preferences of these lower satisfaction groups, businesses
can tailor their offerings to appeal to them, potentially increasing repeat visits and overall customer
loyalty.

1.2 Dataset
The dataset centers on understanding how patrons perceive the quality, value, and overall ex-

perience of the services they use. This focus is particularly important, as it not only reflects levels
of customer satisfaction but also uncovers how expectations and preferences vary by demographic
across various types of attractions. Different categories such as museums, theme parks, zoos, histor-
ical landmarks, religious sites, and entertainment venues, may appeal to diverse demographics and
fulfill different experiential needs, and user ratings offer a way to quantify and compare these sub-
jective experiences. By analyzing the aggregated feedback, insights may be gained regarding which
types of attractions resonate most positively with which individuals.

The data, sourced from the UCI Machine Learning Repository by Renjith, 2018, comprises av-
erage Google user ratings across 24 attraction categories in various European countries. Each data
point represents the individual rating for all attractions within a given category, using a 1 to 5 scale,
where 1 denotes a poor experience and 5 denotes an excellent experience. Any review of a zero was
interpreted as the individual not leaving any reviews in that category.

Averaging by attraction type helps facilitate the identification of broader patterns in user senti-
ment, making it possible to assess a more general public perception and satisfaction levels for different
attraction types. Ultimately, the project seeks to interpret these patterns not only to understand how
certain attractions are received by certain like groups, but also to offer actionable insights for tourism
authorities, city planners, and business owners aiming to enhance visitor experience, allocate resources
more effectively, and tailor services to better meet public expectations.

1.3 Research Questions
The primary goal of this paper is to address the objective of:

"Comparing different clustering methods and evaluate their effectiveness in grouping individuals
based on their attraction preferences."

We also pose the following mathematical questions to gain a deeper understanding of the methods we
used.
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• How do the results from each clustering method compare when applied to the user review data?

• Do all methods produce similar cluster groupings, or do they reveal different patterns in the
data?

• Does the optimal number of clusters differ between each method of clustering?

• Are the resulting clusters balanced, or do some methods create a few large clusters and many
smaller ones?

• How do each of the methods handle outliers and noise in the data?

2 Mathematical Formulation
Throughout our analysis we will compare various clustering algorithms and dimension reduction

methods. It is crucial to know what is the mathematical motivation behind how they work such as the
theoretical and formulation of the models. In total there are a total of 3 clustering algorithms that we
wish to compare their analysis. Elaborating on them we have:

2.1 Clustering Algorithm

2.1.1 Agglomerative Clustering

Agglomerative clustering starts with every point in its own cluster, then merges the pair (A,B) of
clusters with the lowest set-wise distance or linkage until left with k clusters. The choice of linkage is
very important. Pedregosa et al., 2011 includes these linkages:

• Single-linkage is the fastest one and equals:

min
a∈A,b∈B

d(a, b).

• Complete-linkage is comparable, and equals:

max
a∈A,b∈B

d(a, b).

• Unweighted average is the distance between the average over all a and all of b.

• Weighted average starts by merging clusters via some distance metric, d(a, b), then when A
and C are merged, the new cluster’s distance to cluster B is:

d(a, b) + d(c, b)

2
.
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Initially, it does not look weighted, but overall a point has less impact on the distances of a
cluster it is in if it has been a part of more merges.

• Centroid linkage is the distance between the centroids, which can be written as:

D (CA, CB) =

∥∥∥∥∥ 1

|CA|
∑
x∈CA

x− 1

|CB|
∑
x∈CB

x

∥∥∥∥∥
• Median linkage is like centroid linkage, except when A and C are merged, the new centroid

is the median of the two previous centroids. It is to centroid linkage as weighted average is
to unweighted average. For both centroid and median, the lowest linkage is not guaranteed to
decrease as clusters get merged, which complicates visualization.

• Ward linkage is the variance of the new cluster, minus the variances of the old clusters. This is
very natural if the data is assumed to come from a Gaussian mixture model (i.e., a set of normal
distributions).

To determine the most suitable linkage for hierarchical clustering, we can refer to the Cophenetic
Correlation Coefficient (CPCC). The CPCC measures the correlation between the original pairwise
dissimilarities (such as Euclidean distance or other distance metrics) and the cophenetic distances
derived from the hierarchical clustering tree. The cophenetic distance represents the height at which
two data points or objects are first merged into a cluster within the dendrogram.

The CPCC quantifies how well the dendrogram preserves the original pairwise distances between
data points. It is calculated as follows: Let dij denote the Euclidean distance between the i-th and j-th
points, and let tij represent the dendrogram distance, which is the height at which the objects are first
merged. The CPCC is computed using the formula from Kumar and Toshniwal, 2016:

CPCC =

∑
i<j

(
dij − d′ij

)
·
(
tij − t′ij

)√(∑
i<j

(
dij − d′ij

)2) ·
(∑

i<j

(
tij − t′ij

)2)
In this equation, d′ij and t′ij represent the means of the original pairwise dissimilarities and the

cophenetic distances, respectively. A higher CPCC value, close to 1, indicates that the dendrogram
better preserves the original pairwise distances, suggesting that the clustering method has effectively
captured the true relationships among the data points.

To predict with agglomerative clustering, we could add each new point as a new cluster and
continue the algorithm, disallowing merges between old clusters.

2.1.2 K-Means Clustering

K-Means refers to a variety of algorithms to find k clusters, with every point being closer to
its cluster’s centroid (mean) than to any other mean. The most common is Lloyd’s algorithm. It
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begins by randomly selecting k points to act as the initial cluster center. Then, each data point in the
dataset is assigned to the nearest of these means based on some distance metric, typically Euclidean
distance. After all points have been assigned, the algorithm updates each cluster center by computing
the centroid of all the points currently assigned to that cluster. This is repeated until convergence.
This algorithm is fast, but is only guaranteed to converge for Euclidean distance, and even then often
converges to a "poor" result. Additionally, unlike agglomerative clustering, a change in k produces
drastically different results, and this parameter needs to be tuned. Therefore, the entire algorithm must
be run many times for good results.

Our version of prediction in the K-Means setting is to simply add new points to the cluster of the
closest mean, which is much simpler than our other notions of prediction.

2.1.3 DBSCAN Clustering

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) views a cluster as a high
density region surrounded by low density "noise". Points with more than n points within a distance of
ε are considered core points and form a cluster with other nearby core points; non-core points within
ε of a core point are border points of that cluster; and all other points are noise. The main parameter
that requires particular attention to tune is ε (the model fails completely if not), and n can be adjusted
intuitively to keep the proportion of noise at a reasonable level. Unlike the other two, the number of
clusters naturally follows from the choice of ε and n.

DBSCAN prediction entails checking for core points within ε of the new points, and if so putting
the new point in the cluster of a randomly selected nearby core point.

2.2 Dimensionality Reduction for Data Visualization
Dimensionality reduction plays a crucial role in helping us visualize our data, particularly when

dealing with a high number of features, as in the case of the 24 features in our analysis. As we will see
later in the mathematical analysis, these features can be reduced to 6 broad categories based on their
natural groupings.

Let X be the design matrix, where the i-th row is denoted by X(i), representing the i-th of n
points in the data, with components x(i)

j . Assume that the mean of x(i) is 0.

2.2.1 Principal Component Analysis (PCA)

PCA finds the lower dimensional subspace to project the data onto, so that the projected data
keeps (or explains) the most variance. For 1 dimension, if v is a unit vector, the variance is

n∑
i=1

(x(i) · v) · |v|2

v · v
= v⊤X⊤Xv.
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such can be maximized by the method of Lagrange Multipliers, and will yield a maximum when

2X⊤Xv = 2λv,

i.e. when v is an eigenvector of X⊤X (i.e. the right singular vectors of X), and λ is the corresponding
eigenvalue. The variance in this direction is then:

v⊤λv = λ.

Therefore, our subspace is the span of eigenvectors of X⊤X , with preference to higher eigenvalues.

Figure 2: Variance Explained plot of each component on the 6 categories

Figure 2 illustrates the amount of variance explained by each principal component, ordered by
eigenvalue. The eigenvalues for the first five components are as follows:

[1.83851435, 1.08723072, 1.00676677, 0.8226788, 0.76023398],

which were computed via Singular Value Decomposition (SVD) as explained.
It is worth considering that PCA, being linear, gives high influence to faraway points; this is

likely not a concern for us since the data has known bounds. If there is structure to the data but it is not
linear, PCA will not enable it to be detected. Lastly, also note that faraway points may be projected to
the same point, so clusters within PCA may not translate well back to real data.

2.2.2 Multidimensional Scaling (MDS)

MDS refers to a variety of methods based on minimizing a loss function (or "strain"), such as:
n∑

i,j=1

(∣∣x(i) − x(j)
∣∣p − ∣∣s(i) − s(j)

∣∣p)2

,
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over the si, which are lower-dimensional vectors representing the data points x(i). In words, MDS
aims to preserve the pairwise distances between points rather than focusing on the variance of the
data. For instance, with p = 2, we can write:

s(i)s(j) = −0.5
(∣∣s(i) − s(j)

∣∣2 − ∣∣s(i)∣∣2 − ∣∣s(j)∣∣2) ,

to minimize a somewhat similar function:
n∑

i,j=1

(
x(i) · x(j) − s(i) · s(j)

)2
= tr

(
A⊤A

)
,

where A := X⊤X − S⊤S. Clearly, this function is minimized when X⊤X = S⊤S, so, in the
same spirit as PCA, dropping the components of X with low singular values should produce a good
approximation.

Further generalizations (including non-metric MDS, which works even on non-Euclidean dis-
tance, which travel ratings may fall under) are not conducive to similar analysis, instead relying on the
iterative SMACOF algorithm.

MDS is limited by the fact that its dimensions generally do not lead to easy interpretation; if the
data had labels, the plot could give insight into the broad shape of the existing categories. Therefore
the hope is that its clusters more accurately reflect the original data than PCA.

2.2.3 Isometric Mapping (Isomap)

Isomap is a variant of MDS where the distance metric is defined as the length of the shortest path
between two points, consisting of segments only from a point to one of its nearby points. "Nearby
points" can either be those within a certain radius r, or the k nearest neighbors of a point. In other
words, distance is measured only along the dense regions of the data. While Isomap shares the same
caveats as MDS, it is slower due to the more complicated metric and adds an additional parameter to
tune.

If the dataset has been "folded" in such a way as to bring points that are far away in some con-
founding variable closer together (e.g. extremely rich but frugal people having some of the same
travel preferences as middle class people), Isomap can be useful to unfold the dataset. It shares this
advantage with DBSCAN since both are nearest neighbor methods, so we expect the two methods to
be highly compatible.

2.3 Clustering Evaluation Metrics
A natural question that arises is: how does one decide how many components are optimal for the

analysis? While it might seem intuitive that more components or dimensions would always result in a
better representation of the data, this is not necessarily the case. In practice, 2-3 dimension are often
chosen to strike a balance between dimensionality reduction and interpretability, making it easier to
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visualize and analyze the data. However, it’s crucial to compare the performance of these components
using clustering metrics.

In this case, we employed several clustering evaluation metrics to guide our decision-making:
Silhouette Score, Calinski-Harabasz Index, and Davies-Bouldin Index specifically for K-means and
Agglomerative since these methods allow us to decide the number of clusters to have. These are
the only metrics available on scikit-learn that work even without ground truth labels. DBSCAN is
excluded from the Davies-Bouldin Index due to its ability to determine the cluster based on various
parameters. Also note that average linkage was used for Agglomerative method. These metrics assess
the quality of the clusters based on different criteria:

• Silhouette Score: The silhouette score for a single point is given by:

b− a

max(a, b)
,

where a is the mean distance to other points in the same cluster, and b is the mean distance to
points in the nearest neighboring cluster. A silhouette score above about 0.6 indicates a good
clustering, while a negative value may indicate that a point belongs to a wide cluster that is
close to a more compact cluster. The silhouette score for the entire set of clusters is the average
silhouette score for all points.

• Calinski-Harabasz Index: This index is the F-test statistic applied to clustering, which is the
ratio of between-group variance to within-group variance. A higher Calinski-Harabasz (CH)
index indicates better clustering results. If the clusters overlap or are nested, the between-group
variance will be relatively low, resulting in a lower CH index. Although this index can be
helpful, it should not be used for hypothesis testing as its values tend to be much higher than
those of a typical F statistic.

• Davies-Bouldin Index: The Davies-Bouldin (DB) index for cluster Ci is defined as the maxi-
mum similarity between cluster Ci and all other clusters, given by:

Rij =
si + sj
|µi − µj|

,

where µi is the centroid of cluster Ci, and si is the average distance from points in Ci to the
centroid µi. The DB index is minimized when the clusters are well-separated and compact. The
overall DB index is the mean of the individual DB indices for all clusters. Lower DB index is
better.

3 Mathematical Analysis
We begin with the exploratory data analysis (EDA) and preprocessing of the data that was pro-

vided. The original dataset showed signs of errors, particularly in the covariates, which indicated that
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there were 26 variables. However, upon investigation of the data and the code provided using the
pandas package in Python, it was found that 24 of the 26 variables were the expected categories, 1 was
the user ID that reviewed the attraction, and the final variable was an unnamed column that needed to
be removed.

As part of preprocessing, we also relabeled columns to make them more accessible for reference
during the analysis. The data showed signs of duplicate records, specifically the pairs (2,4), (670,674),
and (1338,1346), which were removed. There could be an argument for keeping these pairs in cases
where users might be considered "twins" (i.e., two users leaving identical or near-identical reviews),
but the decision was made to remove them to avoid skewing the analysis.

We also addressed missing and corrupted values for users 1347, 1348 and 2712, where there
were missing data in the "garden" and "pizza and burger" categories, respectively. These missing
values were imputed with 0s since 0 indicates that the user did not review those particular attractions,
as previously mentioned in 1.2).

Moving forward, we considered outliers. Since Google reviews are restricted to a 1-5 scale, out-
liers within this range may not necessarily be errors and are just extreme values within the allowed
range. These extreme values (such as consistently giving very high or very low ratings) could reflect
legitimate user experiences. Removing them might lead to an inaccurate representation of the general
population. Therefore, it was crucial to keep all review values, as they are meaningful to our conclu-
sions. However, there were indications of bimodal distributions for certain attractions, which we took
note of but chose not to address directly in the analysis.

In the variable selection phase, we focused on the importance of understanding the relationship
between variables, as one might explain the other. This can be assessed by using a correlation heatmap.
In practice, values greater than a threshold of 0.7-0.8 in correlation indicate that one of those variables
should be removed to avoid multicollinearity. The largest correlation we found was 0.62 between
"theatres" and "parks," which is not large enough to warrant concern. Therefore, both variables were
retained for further analysis.

To better facilitate our analysis, we grouped the individual features into a broader subcategories
based on their nature and relevance. This categorization helped us streamline the analysis and interpret
the data more effectively. These categories are:

• Entertainment: Features: Theatres, Dance Clubs, Malls

• Food & Travel: Features: Restaurants, Pubs/Bars, Burger/Pizza Shops, Juice Bars, Bakeries,
Cafes

• Places of Stay: Features: Hotels, Resorts, Other Lodgings

• Historical: Features: Churches, Museums, Art Galleries, Monuments

• Nature: Features: Beaches, Parks, Zoos, View Points, Gardens

• Services: Features: Local Services, Swimming Pools, Gyms, Beauty Spas
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Figure 3: Heatmap of correlation matrix pairwise between all 24 categories

We then moved into applying PCA (Principal Component Analysis) to our data as described in
2.2.1, we compared the metric scores of various clustering algorithms after applying PCA using differ-
ent numbers of components ( ranging from 2 to 5). In Figure 4, it is clear that the configuration with 2
principal components (represented by the green and blue curves) yields the most favorable clustering
results, outperforming the other configurations with more components. Notably, the two components
retained 66% of the variance in PCA, which we found to be sufficient for effective clustering. This
supports the decision to use 2 components as the optimal choice for our clustering analysis.

Figure 4: Comparison of the effect of varying the number of principal components in PCA, evaluated
using Silhouette, Davies-Bouldin, and Calinski-Harabasz
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Similarly, Figure 5 shows the same plot but using the MDS dimension reduction method.

Figure 5: Comparison of the effect of varying the number of MDS components, evaluated using
Silhouette, Davies-Bouldin, and Calinski-Harabasz

To explore groups of people based on these two principal components, we proceeded with Ag-
glomerative Clustering. This clustering method requires a predefined linkage criterion, and to evaluate
the effectiveness of our chosen linkage, we used the Cophenetic Correlation Coefficient (CCC). Fig-
ure 6 shows the result for the Cophenetic Correlation Coefficient of different linkage based on the 2
principal components.

Figure 6: Cophenetic Correlation Coefficients for various linkage types in agglomerative clustering,
applied to the first two principal components of PCA on the user review dataset.

The average linkage method, which was identified as the largest value in our plot, is the preferred
choice in our case. While Agglomerative Clustering is deterministic, it still allows us to choose the
number of clusters based on a distance cutoff from the dendrogram. However, we can also use clus-
tering metrics such as the Silhouette score and the Calinski-Harabasz index to guide this decision.
Referring back to the Figure 4, we observe that with 2D PCA, Agglomerative Clustering with 2 clus-
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ters and average linkage performs the best in both the silhouette score and Calinski-Harabasz index.
Given that it excels in two key metrics, we favor this configuration of 2 clusters for our analysis.

Similarly to Agglomerative Clustering, K-Means allows us to pick the numbers of clusters how-
ever it is required us to predetermine the number of clusters before performing any calculations. In
contrast to Agglomerative, where the number of clusters is determined after examining the dendro-
gram, K-Means requires us to specify the cluster count upfront. One common method for selecting
the optimal number of clusters is the elbow method, which is based on examining the inertia which is
a measure of how internally consistent the clusters are.

When applying the elbow method on the 2D PCA data, we plot the inertia values against the
number of clusters to identify the "elbow" point, where the decrease in inertia starts to slow down.
This elbow indicates a good trade-off between the number of clusters and the variance explained by
them. The plot of inertia against the number of clusters is shown in Figure 7.

Figure 7: Intertia plot for various cluster numbers of K-Means

The point of the elbow method is to observe where the curve begins to flatten out. Although this
is inherently subjective, we chose 4 clusters as the optimal number. To validate our choice, we can
refer back to the Figure 4 . Looking at the blue curve across all metrics, we see that 4 clusters perform
the best in terms of the silhouette score and Davies-Bouldin index. Since it performs best in 2 out of 3
metrics, while the other configurations perform less favorably, we can confidently stick with 4 clusters
for our final model.

Finally, we move on to DBSCAN (Density-Based Spatial Clustering of Applications with Noise).
Unlike the previous two methods, which allow us to choose the number of clusters either before or
after applying the model, DBSCAN does not explicitly require us to specify the number of clusters.
Instead, DBSCAN forms clusters based on the density of points within a specified neighborhood,
controlled by the parameter epsilon (ϵ).

While DBSCAN does not have a fixed number of clusters, we can still control it through the ep-
silon parameter, which defines the radius of a neighborhood around each point. Additionally, methods
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like the elbow method, used for determining the K-distance like the one shown in Figure 8, can help
us determine an optimal epsilon value. This K-distance plot allows us to visually identify a point at
which the distance between points starts to increase significantly, which can guide the selection of
epsilon.

Figure 8: K-Distance plot for determining the epsilon value using the elbow method for DBSCAN.

Similar to inertia, we can look for an elbow point in the K-distance plot. However, this approach
is subjective, and in our case, we identified the elbow around an epsilon value of 0.3. That said, the
K-distance graph does not explicitly tell us which epsilon values result in meaningful clusters. For
instance, certain epsilon values might lead to a scenario where DBSCAN forms one large cluster after
subtracting the noise, which does not offer a meaningful clustering solution. This can happen if the
dataset is sparse or if DBSCAN does not find enough points with the given epsilon to form valid
clusters due to too many noise points or insufficient density. In such cases, the algorithm may fail to
identify clusters with more than one unique label.

To address this, we focused on evaluating the quality of clusters for different epsilon values. We
iterated through epsilon values from 0.1 to 1 in increments of 0.05, assessing the clustering results
based on meaningful metrics. After evaluating the performance across multiple epsilon values, we
found that an epsilon of 0.2 yielded the best results, as it performed the best in both the Silhouette
Score and Calinski-Harabasz Index. This choice was further supported, as it outperformed the other
values in 2 out of 3 metrics, making it the optimal choice for our DBSCAN clustering analysis.

Looking at Figure 9, we found that with an epsilon value of 0.2, DBSCAN identified 4 true
clusters and 1 noise cluster. This result aligns with the performance of DBSCAN for this particular
epsilon value, as it effectively separated the data into meaningful clusters, while the noise cluster
represented points that did not fit well into any of the identified clusters. This outcome was supported
by the higher Silhouette Score and Calinski-Harabasz Index for epsilon = 0.2, indicating that the
clustering structure was both well-defined and meaningful. The noise cluster, although present, did
not significantly affect the overall clustering quality.
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Figure 9: Comparison of evaluation metrics for various epsilon values for DBSCAN

4 Results

4.1 PCA
The results of each method are as follows: Agglomerative, K-means, and DBSCAN resulted in 3,

4, and 4 clusters, respectively. Since we applied PCA before clustering, we were able to visually assess
how the data is grouped in the reduced 2D space. Figure 10 below illustrates this by plotting each data
point along the axes of Component 1 and Component 2, with points color-coded according to their
respective clusters. This visual representation allows us to compare how the clusters are distributed
across the three methods.

For PCA: In Agglomerative and K-means clustering, we observe that the clusters are not very
distinct. This is evident from the noticeable overlap between clusters, which suggests that the algo-
rithms are not capturing the underlying structure of the data very well. This observation aligns with the
silhouette score, which we will discuss later. When clusters overlap significantly, it typically indicates
poor separation, meaning the algorithm has trouble distinguishing between the sub-categories. Ide-
ally, a good clustering algorithm should show clear separations between clusters that are often easily
distinguishable by humans in a scatter plot.

DBSCAN, on the other hand, shows a very skewed distribution in its clusters, particularly in
Cluster 0, which contains the majority of the data points. The remaining clusters have very few
members, if any. This distribution suggests that DBSCAN is less meaningful for our dataset, as it
tends to group most of the points into a single large cluster while leaving only sparse and scattered
points in the others. Given this behavior, DBSCAN does not appear to capture the ideal groupings in
this particular case.
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Figure 10: PCA plots for the different clustering algorithm

4.2 MDS and Isomap
For classic MDS (Figure 11), the data is quite globular with visible breaks, which seem to be

best captured by agglomerative clustering. DBSCAN has approximately the same 2 big clusters but
again creates a lot of small clusters. K-Means consistently produces this result where the centroids
form a sort of rhombus but the clusters do not seem particularly well-separated.

Figure 11: MDS plots for the different clustering algorithm

Non-metric MDS (Figure 12) produces points with no visually discernible structure other than
being square. Here it is most obvious that K-means tends to prefer equal size clusters, and DB-
SCAN generates a very large one that envelops several smaller ones. For agglomerative clustering,
the Davies-Bouldin score stays at a constant 271.57 no matter which linkage or cluster number is used,
which is absurdly high and might indicate some sort of error. This seems quite bad as a vehicle for
clustering.
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Figure 12: Non-Metric MDS plots for the different clustering algorithm

20 neighbors in Isomap (Figure 13) causes very similar results to MDS (tilt perspective 90 de-
grees counterclockwise). This indicates that this number of neighbors is not small enough to separate
the method from Euclidean distance. The main difference is that agglomerative clustering now sees 2
clusters as slightly better.

Figure 13: 20-Neighbour Isomap plots for the different clustering algorithm

In 5 neighbor isomap (Figure 14), some contingent near the top of the graph appears to be
separating from the rest of the points (as compared to 20 neighbor isomap), which is captured by all 3
methods, though DBSCAN seems to see a lot of it as noise.

Figure 14: 5-Neighbour Isomap plots for the different clustering algorithm
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4.3 PCA Result Analysis
For PCA, we continue by delving into the statistical analysis by examining the median ratings

of various subcategories for each cluster. This helps us gain a deeper understanding of the types of
individuals that fall within each group, as shown in the Figure 15.

Starting with the Agglomerative method, we observe that Cluster 0 represents individuals who
are more neutral about all attractions. These individuals are not overly excited nor particularly dis-
appointed with their experiences; they appear to be generally satisfied with each attraction. The key
distinction between Clusters 1 and 2 lies in their ratings for the place of stay. Cluster 1 shows clear
dissatisfaction with their accommodation, with a median rating of approximately 1.5, whereas Cluster
2 has a significantly higher rating of about 3.4. This difference in accommodation satisfaction is the
defining characteristic that sets these two clusters apart.

Moving on to K-means, the pattern is somewhat similar to Agglomerative, with the data again
split into two primary groups based on satisfaction with the place of stay. Clusters 0 and 3 have higher
ratings for accommodation, while Clusters 1 and 2 express dissatisfaction. However, the distinction
between Cluster 0 and Cluster 3, as well as between Clusters 1 and 2, becomes more evident when
examining their ratings for food, travel, and nature. These factors are particularly significant in dif-
ferentiating the clusters within K-means, providing more nuanced sub-groupings based on individual
preferences and experiences.

Finally, DBSCAN presents a more challenging interpretation due to the wide distribution of clus-
ters. Cluster 0 captures the majority of the data and reflects individuals who are generally satisfied
with most attractions, neither overly excited nor disappointed. However, the remaining clusters are
much smaller and more specialized, representing niche preferences in areas such as satisfaction with
the place of stay, food, travel, and nature. These smaller clusters suggest that DBSCAN identifies
specific, perhaps more extreme, preferences that are not as widespread within the dataset.

As mentioned, a good way to assess how well our clustering algorithm performed after applying
PCA is by examining three key metrics: the silhouette score, the Calinski-Harabasz index, and the
Davies-Bouldin index, all of which were discussed in the previous section. Each algorithm’s chosen
number of clusters represents the best result for that specific method, but how do they compare against
each other? To provide a clearer picture, the table in Appendix A summarizes the results, allowing us
to evaluate the performance of each algorithm based on the metric we will use.

Looking at the Silhouette Score, K-means performs the best with a score of 0.391, indicating the
most well-separated and cohesive clusters. Agglomerative follows with a score of 0.349, suggesting
slightly less distinct clusters compared to K-means, with more overlap between them. DBSCAN,
with a score of 0.04, shows poor cluster separation, likely due to its creation of one dominant cluster
(Cluster 0) that captures most of the data, along with several smaller, less cohesive clusters. This result
was expected given DBSCAN’s tendency to form large, less distinct clusters, which was evident in the
PCA plot, where the clusters appeared to be spread out and overlapping.

When examining the Calinski-Harabasz Index, K-means again outperforms the other algorithms
with a score of 4404.151, reflecting good balance between cluster cohesion and separation. Agglom-
erative Clustering comes next with a score of 3785.521, which indicates reasonable separation but not

Page 17 of 20



MATH 509 Winter 2025 4.3 PCA Result Analysis

(a)

(b) (c)

Figure 15: Median ratings for individual features across the clusters generated by the Agglomerative
(a), K-Means (b), and DBSCAN (c) Clustering Algorithms.

as strong as K-means. DBSCAN’s score of 123.27 highlights its less favorable clustering structure,
with a large central cluster and smaller, possibly incoherent clusters that reduce overall separation.
Again, this was anticipated based on the PCA plot, where DBSCAN’s results showed a more chaotic
distribution.

In the Davies-Bouldin Index, K-means continues to lead with a score of 0.818, showing that its
clusters are more distinct and less similar to one another. Agglomerative follows with a slightly higher
value of 0.919, indicating some overlap, though still relatively distinct clusters. DBSCAN scores
the highest at 2.12, suggesting poor separation and a less meaningful cluster structure, primarily due
to the dominance of the large central cluster and the unclear smaller clusters. This aligns with our
expectations based on the PCA plot, where DBSCAN’s cluster distribution appeared less defined.

In conclusion, K-means stands out as the best-performing algorithm across all three metrics,
producing the most cohesive and well-separated clusters. Agglomerative Clustering is effective but
falls short of K-means, while DBSCAN shows the weakest performance overall, with poorly defined
clusters and less meaningful separation. These results emphasize the importance of selecting the
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appropriate clustering algorithm based on the data’s characteristics and the analysis objectives. As
anticipated, DBSCAN’s performance was hindered by the overlapping clusters visible in the PCA
plot, which made it less suitable for this particular dataset.

5 Discussion

5.1 Summary and Limitations
Overall, it seems that the clustering is improved a little by the addition of dimensionality reduc-

tion, with agglomerative generally having better silhouette score and K-means generally having better
Calinski-Harabasz. DBSCAN had generally poor silhouette and Calinski-Harabasz but sometimes
had passable Davies Bouldin index. However, most of these scores are not objectively high, indicating
that either our data or algorithms were not sufficient to find very meaningful cluster sets (though some
clusters do capture real trends).

Our main limitation was the lack of labels in the provided data, which greatly limited the scope
of our research and our possibilities for evaluating model performance. Still, we may be able to im-
prove our analysis by investigating even more methods. Potentially relevant dimensionality reduction
techniques not covered include kernel PCA, locally linear embedding (a relative of Isomap), or au-
toencoders (neural networks). For clustering, our use case seems possibly conducive to affinity propa-
gation, bisecting k-means (a combination of hierarchical and k-means), and HBDSCAN (an ensemble
variant of DBSCAN).

5.2 Potential Applications
1. Cross-Brand Opportunities: Clustering insights can also create opportunities for collaboration

between businesses with overlapping customer bases. For instance, two different companies
where one specializing in museums and another in fine dining might find they serve the same
cluster of culturally oriented travelers. They could offer bundled promotions or reciprocal dis-
counts to encourage cross-patronage. These kinds of strategic partnerships are already seen in
industries like retail and hospitality, and clustering methods offer a more data-driven approach
to identifying the most promising collaborations.

2. Tourism Planning and Policy Development: Governments and tourism boards can lever-
age clustering insights to better understand the diverse interests of travelers and plan accord-
ingly. If certain regions attract clusters that prioritize cultural experiences, infrastructure in-
vestments might focus on museums, historical sites, or festivals. In contrast, regions popular
among adventure-seeking clusters could benefit more from developing outdoor recreation or
eco-tourism options. By aligning public investment and marketing strategies with data-backed
tourist preferences, cities and countries can optimize visitor satisfaction while boosting eco-
nomic returns.
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3. Personalized Travel Recommendations: Clustering can also enhance the capabilities of travel
apps and online booking platforms. By identifying user segments based on attraction pref-
erences, these platforms can offer personalized itineraries, attraction suggestions, or package
deals that align with a traveler’s interests. For example, someone falling into a cluster with high
ratings for nightlife and shopping might receive recommendations for vibrant cities, evening
events, and popular shopping districts. This kind of tailored experience can improve user satis-
faction, increase engagement, and drive conversions for platforms and partner businesses alike.
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Appendix A

Grouping Only Agglomerative K-Means DBSCAN
Number of Clusters 2 2 3
Silhouette Score 0.309 0.253 0.160
Calinski-Harabasz Score 14.812 1790.145 33.294
Davies Bouldin 0.837 1.617 0.796

Table 1: Clustering results for Grouping Only

PCA Agglomerative K-Means DBSCAN
Number of Clusters 3 4 4
Silhouette Score 0.349 0.391 0.04
Calinski-Harabasz Score 3785.521 4404.151 123.27
Davies Bouldin 0.919 0.818 2.12

Table 2: Clustering results for PCA

MDS Agglomerative K-Means DBSCAN
Number of Clusters 3 4 12
Silhouette Score 0.445 0.433 0.024
Calinski-Harabasz Score 3682.255 5603.573 593.630
Davies Bouldin 0.752 0.781 1.58

Table 3: Clustering results for MDS
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5-Neighbor Isomap Agglomerative K-Means DBSCAN
Number of Clusters 3 2 27
Silhouette Score 0.539 0.495 -0.097
Calinski-Harabasz Score 5840.046 7954.179 754.68
Davies Bouldin 0.610 0.713 0.623

Table 4: Clustering results for 5-Neighbor Isomap
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